If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2-4r-29=0
a = 1; b = -4; c = -29;
Δ = b2-4ac
Δ = -42-4·1·(-29)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{33}}{2*1}=\frac{4-2\sqrt{33}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{33}}{2*1}=\frac{4+2\sqrt{33}}{2} $
| 3=u-49/10 | | 2(n-66)=68 | | 2((n-66)=68 | | x+6/2=4 | | 9(p-89)=63 | | 4-6=x5x | | 2m2=7m-6 | | 22x+11=4x+7 | | 8w=3w+35 | | -2h+4=12 | | t-43/7=6 | | 43,425-125x=200x-45,000 | | 13=90-6q | | 24-4p=16 | | Y=(3-5)(x+2) | | -5(2)+2y-2=0 | | 5t2-13t+6=0 | | g/6-3=3 | | 5/6n=5/9 | | -2c–7=11–5c | | Y=(3-15)(x+2) | | 30=4h+2 | | 12=4x³+6x-1 | | -25=-5(z+91) | | 20x+625=10x | | 4=h/8-2 | | -j/12=-18 | | 89=29+3m | | p^2=14p-38=0 | | 12k-2=0 | | j+20/9=5 | | j/3+36=41 |